资源类型

期刊论文 395

会议视频 4

年份

2024 2

2023 19

2022 52

2021 38

2020 31

2019 37

2018 17

2017 14

2016 14

2015 6

2014 14

2013 28

2012 9

2011 17

2010 11

2009 23

2008 17

2007 15

2006 4

2005 4

展开 ︾

关键词

混凝土 17

三峡工程 7

三峡升船机 4

可持续性 3

桥面铺装 3

混凝土坝 3

混凝土面板堆石坝 3

三点弯曲梁 2

升船机 2

实时监控 2

承载力 2

施工技术 2

混凝土浇筑 2

碾压混凝土坝 2

组合梁 2

700 m跨径级别 1

ANSYS 1

D区 1

FRP 聚合物 1

展开 ︾

检索范围:

排序: 展示方式:

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 895-904 doi: 10.1007/s11709-021-0759-z

摘要: This research investigated a pavement system on steel bridge decks that use epoxy resin (EP) bonded ultra-high performance concrete (UHPC). Through FEM analysis and static and dynamic bending fatigue tests of the composite structure, the influences of the interface of the pavement layer, reinforcement, and different paving materials on the structural performance were compared and analyzed. The results show that the resin bonded UHPC pavement structure can reduce the weld strain in the steel plate by about 32% and the relative deflection between ribs by about 52% under standard axial load conditions compared to traditional pavements. The EP bonding layer can nearly double the drawing strength of the pavement interface from 1.3 MPa, and improve the bending resistance of the UHPC structure on steel bridge decks by about 50%; the bending resistance of reinforced UHPC structures is twice that of unreinforced UHPC structure, and the dynamic deflection of the UHPC pavement structure increases exponentially with increasing fatigue load. The fatigue life is about 1.2 × 107 cycles under a fixed force of 9 kN and a dynamic deflection of 0.35 mm, which meets the requirements for fatigue performance of pavements on steel bridge decks under traffic conditions of large flow and heavy load.

关键词: steel bridge deck pavement     ultra-high-performance concrete     epoxy resin     composite structure     bending fatigue performance    

Development of combined transitional pavement structure for urban tram track-road grade crossings

《结构与土木工程前沿(英文)》   页码 1199-1210 doi: 10.1007/s11709-023-0949-y

摘要: The grade crossings and adjacent pavements of urban trams are generally subjected to complex load conditions and are susceptible to damage. Therefore, in this study, a novel pavement structure between tram tracks and roads constructed using polyurethane (PU) elastic concrete and ultra-high-performance concrete (UHPC), referred to as a track-road transitional pavement (TRTP), is proposed. Subsequently, its performance and feasibility are evaluated using experimental and numerical methods. First, the mechanical properties of the PU elastic concrete are evaluated. The performance of the proposed structure is investigated using a three-dimensional finite element model, where vehicle-induced dynamic and static loads are considered. The results show that PU elastic concrete and the proposed combined TRTP are applicable and functioned as intended. Additionally, the PU elastic concrete achieved sufficient performance. The recommended width of the TRTP is approximately 50 mm. Meanwhile, the application of UHPC under a PU elastic concrete layer significantly reduces vertical deformation. Results of numerical calculations confirmed the high structural performance and feasibility of the proposed TRTP. Finally, material performance standards are recommended to provide guidance for pavement design and the construction of tram-grade crossings in the future.

关键词: urban tram track     grade crossing     combined track-road transitional pavement     polyurethane elastic concrete     finite element method    

Finite element modeling of environmental effects on rigid pavement deformation

Sunghwan KIM,Halil CEYLAN,Kasthurirangan GOPALAKRISHNAN

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 101-114 doi: 10.1007/s11709-014-0254-x

摘要: In this study, finite element (FE)-based primary pavement response models are employed for investigating the early-age deformation characteristics of jointed plain concrete pavements (JPCP) under environmental effects. The FE-based ISLAB (two-and-one-half-dimensional) and EverFE (three-dimensional) software were used to conduct the response analysis. Sensitivity analyses of input parameters used in ISLAB and EverFE were conducted based on field and laboratory test data collected from instrumented pavements on highway US-34 near Burlington, Iowa. Based on the combination of input parameters and equivalent temperatures established from preliminary studies, FE analyses were performed and compared with the field measurements. Comparisons between field measured and computed deformations showed that both FE programs could produce reasonably accurate estimates of actual slab deformations due to environmental effects using the equivalent temperature difference concept.

关键词: jointed plain concrete pavements (JPCP)     curling and warping     sensitivity analyses     rigid pavement analysis and design     finite element analysis (FEA)    

Investigation on the freeze-thaw damage to the jointed plain concrete pavement under different climate

Shuaicheng GUO, Qingli DAI, Jacob HILLER

《结构与土木工程前沿(英文)》 2018年 第12卷 第2期   页码 227-238 doi: 10.1007/s11709-017-0426-6

摘要: Freeze-thaw damage is one of the main threats to the long time performance of the concrete pavement in the cold regions. This project aims to evaluate the influence of the freeze-thaw damages on pavement distresses under different climate conditions. Based on the Long-Term Pavement Performance (LTPP) data base, the freeze-thaw damage generated by four different kinds of climate conditions are considered in this project: wet-freeze, wet-non freeze, dry-freeze and dry-non freeze. The amount of the transverse crack and the joint spalling, along with the International Roughness Index ( ) are compared among the test sections located in these four different climate conditions. The back calculation with the Falling Weight Deflectometer (FWD) test results based on the ERES and the Estimation of Concrete Pavement Parameters (ECOPP) methods are conducted to obtain concrete slab elastic modulus and the subgrade -value. These two parameters both decrease with service time under freeze condition. Finally, MEPDG simulation is conducted to simulate the development with service year. These results showed the reasonable freeze-thaw damage development with pavement service life and under different climate conditions.

关键词: LTPP     elastic modulus     k-value     IRI     MEPDG    

复合浇筑式钢桥面铺装车辙评估模型研究

章登精

《中国工程科学》 2013年 第15卷 第8期   页码 63-69

摘要:

根据南京长江第四大桥钢桥面铺装试验研究成果,对复合浇筑式沥青混合料性能进行了分析研究,通过系统分析动稳定度与温度、汽车轮载、车速及行车道间的关系,结合南京地区汽车超载情况的研究,提出并建立了复合浇筑式钢桥面铺装的车辙评估模型。

关键词: 复合浇筑式     钢桥面铺装     动态模量     当量轮次     车辙评估模型    

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1379-1392 doi: 10.1007/s11709-019-0562-2

摘要: To date, very few researchers employed the Least Square Support Vector Machine (LSSVM) in predicting the resilient modulus ( ) of Unbound Granular Materials (UGMs). This paper focused on the development of a LSSVM model to predict the of recycled materials for pavement applications and comparison with other different models such as Regression, and Artificial Neural Network (ANN). Blends of Recycled Concrete Aggregate (RCA) with Recycled Clay Masonry (RCM) with proportions of 100/0, 90/10, 80/20, 70/30, 55/45, 40/60, 20/80, and 0/100 by the total aggregate mass were evaluated for use as UGMs. RCA/RCM materials were collected from dumps on the sides of roads around Mansoura city, Egypt. The investigated blends were evaluated experimentally by routine and advanced tests and the values were determined by Repeated Load Triaxial Test (RLTT). Regression, ANN, and LSSVM models were utilized and compared in predicting the of the investigated blends optimizing the best design model. Results showed that the ’s of the investigated RCA/RCM blends were generally increased with the decrease in RCM proportion. Statistical analyses were utilized for evaluating the performance of the developed models and the inputs sensitivity parameters. Eventually, the results approved that the LSSVM model can be used as a novel tool to estimate the of the investigated RCA/RCM blends.

关键词: Least Square Support Vector Machine     Artificial Neural Network     resilient modulus     Recycled Concrete Aggregate     Recycled Clay Masonry    

Structural pavement assessment in Germany

Lutz PINKOFSKY, Dirk JANSEN

《结构与土木工程前沿(英文)》 2018年 第12卷 第2期   页码 183-191 doi: 10.1007/s11709-017-0412-z

摘要: The aging structure as well as the considerable increase of heavy-traffic load on Germany’s motorways and trunk roads encourages the use of innovative, sound and reliable methods for the structural assessment on network level as well as on project level. Essential elements for this are data, which allow a reliable assessment. For a holistic approach to structural pavement assessment performance orientated measurements will be necessary. In combination with functional parameters as well as write-down models, strategically motivated decision making processes will be useful combined with technically motivated decision processes. For the application at the network level, the available methods for performance orientated measurements are still challenging, as they are based either on testing drill-cores or on non-traffic speed methods. In recent years significant innovation steps have been made to bring traffic speed bearing capacity measurements and methods for evaluating pavement structures on the road. The paper summarizes the actual assessment procedures in Germany as well as the ongoing work on the development and implementation of new methods and techniques.

关键词: pavement assessment     Germany     structure     system    

Study on the cohesion and adhesion of hot-poured crack sealants

Meng GUO, Yiqiu TAN, Xuesong DU, Zhaofeng LV

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 353-359 doi: 10.1007/s11709-017-0400-3

摘要: Filling crack sealant is a main method to repair cracking of pavement. The cohesion and adhesion of crack sealant directly determine its service performance and durability. However, the competitive mechanism of cohesion and adhesion failure modes is not clear currently. This research proposed two methods to evaluate cohesion and adhesion of crack sealant, and analyzed the influence of temperature on cohesion and adhesion. The effect of moisture on low-temperature performance of crack sealant was also be evaluated by conducting a soaking test. Results show that with the decrease of temperature, the cohesion force of crack sealant increases significantly, while the adhesion force changes little. There is a critical temperature at which the cohesion force equals the adhesion force. When the temperature is higher, the adhesion force will be greater than cohesion force, and the cohesion failure will happen more easily. In contrast, the adhesion failure will happen more easily when the temperature is lower than the critical value. Soaking in 25 °C water for 24–48 hours will slightly improve the low-temperature tension performance of crack sealant. However, soaking in 60 °C water for 24 hours will decrease the failure energy of low-temperature tension and damage the durability of crack sealant.

关键词: crack sealant     concrete pavement     cohesion     adhesion     moisture damage    

Structural characteristics of cement-stabilized soil bases with 3D finite element method

Yunfeng PENG, Yunlong HE,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 428-434 doi: 10.1007/s11709-009-0059-5

摘要: Cement-stabilized soil bases have been widely used in expressways due to its high strength, appropriate stiffness, good water resistance, and frost resistance. So far, the structural characteristics and mechanical behaviors of cement-stabilized soil bases were not investigated so much. In this paper, the 3D elastic-plastic finite element method (FEM) was used to analyze the mechanical behaviors and structural characteristics of cement-stabilized soil bases from construction to operation. The pavement filling and the traffic loading processes were simulated, and a contact model was used to simulate the contact behavior between each layer of the pavement. Considering the construction process, the structural characteristics and mechanical behaviors of cement-stabilized soil bases were studied under asphalt-concrete pavement conditions. Furthermore, the general rules of deformations and stresses in cement-stabilized soil bases under different conditions were discussed, and some suggestions were put forward for the design and construction of cement-stabilized soil bases.

关键词: different     strength     asphalt-concrete pavement     FEM     appropriate stiffness    

Pavement sustainability index for highway infrastructures: A case study of Maryland

Stella O. OBAZEE-IGBINEDION, Oludare OWOLABI

《结构与土木工程前沿(英文)》 2018年 第12卷 第2期   页码 192-200 doi: 10.1007/s11709-017-0413-y

摘要: Pavement deterioration creates conditions that undermine their performances, which gives rise to the need for maintenance and rehabilitation. This paper develops a mathematical multi-linear regression analysis (MLRA) model to determine a pavement sustainability index ( ) as dependent variable for flexible pavements in Maryland. Four categories of pavement performance evaluation indicators are subdivided into seven pavement condition indices and analyzed as independent variables for each section of pavement. Data are collected from five different roadways using field evaluations and existing database. Results indicate that coefficient of determination ( ) is correlated and significant, = 0.959. Of the seven independent variables, present serviceability index ( ) is the most significant with a coefficient value of 0.032, present serviceability rating ( ) coefficient value= 0.028, and international roughness index ( ) coefficient value= ?0.001. Increasing each unit value of coefficients for and would increase the value of ; thereby providing a more sustainable pavement infrastructure; which explains the significance of the model and why will most likely impact environmental, economic and social values.

关键词: pavement indices     sustainability     pavement performance     flexible pavements    

Analysis of cost effective pavement treatment and budget optimization for arterial roads in the city

Mbakisya ONYANGO, Saliha Ammour MERABTI, Joseph OWINO, Ignatius FOMUNUNG, Weidong WU

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 291-299 doi: 10.1007/s11709-017-0419-5

摘要:

Many transportation agencies lack sufficient funds to maintain and repair roads, which results into increased pavement maintenance cost. Pavement Management System (PMS) has demonstrated to be an essential tool for proper management of infrastructure and proper utilization of available funds. The University of Tennessee at Chattanooga utilized Micropaver software as PMS tool to conduct a pavement management analysis of principal arterials in the City of Chattanooga. The study used the City of Chattanooga pavement database to create the current and future pavement conditions. Maintenance and repair (M&R) planning analysis was also performed in order to determine the most cost-effective treatment and suggest the optimum utilization of funds for the city. An analysis of five budget scenarios was conducted for a five-year plan using the critical pavement condition index (PCI) method (ASTM D6433). Results show that the backlog elimination budget would be the best scenario because it increases the pavement condition and eliminates the backlog of major maintenance and repairs over the five-year period. The unlimited budget seems though ideal, it does not improve pavement condition. Maintaining current condition and limited budget scenarios would increase both the backlog and the total cost of maintenance and repairs over the analysis period.

关键词: PMS     Micropaver     pavement budget     maintenance     rehabilitation    

浇筑式沥青混凝土性能影响因素研究

王宏畅,李国芬,章登精

《中国工程科学》 2013年 第15卷 第8期   页码 70-74

摘要:

浇筑式沥青混凝土具有较高的变形随从性而在钢桥面铺装上得到了很多的应用,为研究浇筑式沥青混凝土的性能影响因素,采用4种合成级配、3种沥青用量,系统评价了各因素对浇筑式沥青混凝土性能的影响。通过流动度试验和贯入度试验确定最佳含油量,由高温车辙试验和低温弯曲试验进行路用性能检验。研究表明,级配形式和沥青含油量变化对混合料的性能指标的影响较大,因此,实际施工时应严格控制混合料的级配和沥青用量。

关键词: 道路工程     钢桥面铺装     浇筑沥青混凝土     流动度     贯入度     车辙    

Life-cycle cost analysis of optimal timing of pavement preservation

Zilong WANG,Hao WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第1期   页码 17-26 doi: 10.1007/s11709-016-0369-3

摘要: Optimal application of pavement preservation or preventive maintenance is critical for highway agencies to allocate the limited budget for different treatments. This study developed an integrated life-cycle cost analysis (LCCA) model to quantify the impact of pavement preservation on agency cost and vehicle operation cost (VOC) and analyzed the optimal timing of preservation treatments. The international roughness index (IRI) data were extracted from the long-term pavement performance (LTPP) program specific pavement studies 3 (SPS-3) to determine the long-term effectiveness of preservation treatments on IRI deterioration. The traffic loading and the initial IRI value significantly affects life extension and the benefit of agency cost caused by pavement preservation. The benefit in VOC is one to two orders greater in magnitude as compared to the benefit in agency cost. The optimal timing calculated based on VOC is always earlier than the optimal timing calculated based on agency cost. There are considerable differences among the optimal timing of three preservation treatments.

关键词: pavement preservation     life-cycle cost analysis     agency cost     vehicle operation cost    

Structural dimension optimization and mechanical response analysis of fabricated honeycomb plastic pavement

Zixuan CHEN; Tao LIU; Xiao MA; Hanyu TANG; Jianyou HUANG; Jianzhong PEI

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 896-908 doi: 10.1007/s11709-022-0856-7

摘要: Because of favorable mechanical properties, deformation resistance and being conducive to environmental protection, honeycomb fabricated plastic pavement slabs are highly recommended these years. At present, most studies focus on the performance of plastic materials, however, the dimension optimization of fabricated plastic pavement slab is rarely mentioned. In this paper, an optimized geometry of the honeycomb pavement slab was determined through finite element analysis. Mechanical response of honeycomb slabs with different internal dimensions and external dimensions were explored. Several dimension factors were taken into consideration including the side length, rib thickness, the thickness of both top and bottom slabs of honeycomb structure and the length, the width and the thickness of the fabricated plastic slab. The results showed that honeycomb pavement slab with 6 cm bottom slab, 12 cm top slab,18 cm side length and 6 cm rib thickness is recommended, additionally, an external dimension of 4 m × 4 m × 0.45 m is suggested. Then, the mechanical responses of this optimized fabricated plastic slab were further investigated. Significance of different influencing factors, including wheel load, elastic modulus of plastic material, base layer thickness, soil foundation modulus and base layer modulus were ranked.

关键词: honeycomb structure     plastic pavement     dimension optimization     mechanical response     factor significance    

Estimation of flexible pavement structural capacity using machine learning techniques

Nader KARBALLAEEZADEH, Hosein GHASEMZADEH TEHRANI, Danial MOHAMMADZADEH SHADMEHRI, Shahaboddin SHAMSHIRBAND

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1083-1096 doi: 10.1007/s11709-020-0654-z

摘要: The most common index for representing structural condition of the pavement is the structural number. The current procedure for determining structural numbers involves utilizing falling weight deflectometer and ground-penetrating radar tests, recording pavement surface deflections, and analyzing recorded deflections by back-calculation manners. This procedure has two drawbacks: falling weight deflectometer and ground-penetrating radar are expensive tests; back-calculation ways has some inherent shortcomings compared to exact methods as they adopt a trial and error approach. In this study, three machine learning methods entitled Gaussian process regression, M5P model tree, and random forest used for the prediction of structural numbers in flexible pavements. Dataset of this paper is related to 759 flexible pavement sections at Semnan and Khuzestan provinces in Iran and includes “structural number” as output and “surface deflections and surface temperature” as inputs. The accuracy of results was examined based on three criteria of , , and . Among the methods employed in this paper, random forest is the most accurate as it yields the best values for above criteria ( =0.841, =0.592, and =0.760). The proposed method does not require to use ground penetrating radar test, which in turn reduce costs and work difficulty. Using machine learning methods instead of back-calculation improves the calculation process quality and accuracy.

关键词: transportation infrastructure     flexible pavement     structural number prediction     Gaussian process regression     M5P model tree     random forest    

标题 作者 时间 类型 操作

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

期刊论文

Development of combined transitional pavement structure for urban tram track-road grade crossings

期刊论文

Finite element modeling of environmental effects on rigid pavement deformation

Sunghwan KIM,Halil CEYLAN,Kasthurirangan GOPALAKRISHNAN

期刊论文

Investigation on the freeze-thaw damage to the jointed plain concrete pavement under different climate

Shuaicheng GUO, Qingli DAI, Jacob HILLER

期刊论文

复合浇筑式钢桥面铺装车辙评估模型研究

章登精

期刊论文

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

期刊论文

Structural pavement assessment in Germany

Lutz PINKOFSKY, Dirk JANSEN

期刊论文

Study on the cohesion and adhesion of hot-poured crack sealants

Meng GUO, Yiqiu TAN, Xuesong DU, Zhaofeng LV

期刊论文

Structural characteristics of cement-stabilized soil bases with 3D finite element method

Yunfeng PENG, Yunlong HE,

期刊论文

Pavement sustainability index for highway infrastructures: A case study of Maryland

Stella O. OBAZEE-IGBINEDION, Oludare OWOLABI

期刊论文

Analysis of cost effective pavement treatment and budget optimization for arterial roads in the city

Mbakisya ONYANGO, Saliha Ammour MERABTI, Joseph OWINO, Ignatius FOMUNUNG, Weidong WU

期刊论文

浇筑式沥青混凝土性能影响因素研究

王宏畅,李国芬,章登精

期刊论文

Life-cycle cost analysis of optimal timing of pavement preservation

Zilong WANG,Hao WANG

期刊论文

Structural dimension optimization and mechanical response analysis of fabricated honeycomb plastic pavement

Zixuan CHEN; Tao LIU; Xiao MA; Hanyu TANG; Jianyou HUANG; Jianzhong PEI

期刊论文

Estimation of flexible pavement structural capacity using machine learning techniques

Nader KARBALLAEEZADEH, Hosein GHASEMZADEH TEHRANI, Danial MOHAMMADZADEH SHADMEHRI, Shahaboddin SHAMSHIRBAND

期刊论文